- The two exercises are independent.
- Number of points for each question is given into brackets.
- Total number of points = 20.

EXERCISE 1. We consider a sample $(X1, \ldots, X_n)$ of i.i.d. random variables with density

$$f_{\theta}(x) = \frac{1}{6\theta^4} x^3 \exp(-\frac{x}{\theta}) \mathbf{I}_{\mathbb{R}_+}(x), \quad \theta > 0.$$

- 1. [2 points] Determine a sufficient and complete statistic for θ .
- 2. [2 points] Given that $\mathbb{E}(X) = 4\theta$ and $\mathbb{V}ar(X) = 4\theta^2$, find the unique optimal unbiased estimator $\widehat{\theta}$ of θ .
- 3. [2 points] Show that $\widehat{\theta}$ is asymptotically Gaussian.
- 4. [3 points] Calculate the Fisher information $I_{X_1}(\theta)$, and conclude whether $\hat{\theta}$ is asymptotically efficient.

EXERCISE 2. Let X be a single observation from the density parameterized by $\theta \in [-1, 1]$

$$f_{\theta}(x) = 2\theta x + 1 - \theta,$$

for $x \in [0,1]$, and 0 otherwise. We consider the family of tests with critical region $C_K = \{X \ge K\}$. In questions 1 to 3 below, we want to test $H_0: \theta = 0$ against $H_1: \theta = 1$.

- 1. [2 points] What is the p-value of the observation x = 2/3?
- 2. [2 points] Prove that the family of tests with critical region C_K defined above is the family of most powerful tests for testing H_0 against H_1 .
- 3. [2 points] What is the most powerful test of size $\alpha = 0.05$? We now consider testing $H_0: \theta \leq 0$ against $H_1: \theta > 0$.
- 4. [2 points] Compute the power and the size of the test with critical region C_K for K=1/2.
- 5. [3 points] What is the family of most powerful tests in this situation?