TSE M1 in Economics: Second Session Exam Probability Modeling.

Exercise 1

In a country, the probability p_n a family has n children is given by

$$p_n = a \frac{2^n}{n!}$$
 with $a > 0$.

We assume that the probability to have a boy is the same than the probability to have a girl.

- 1. What is the value of a?
- 2. Compute the probability that at least a family has a boy.
- 3. We assume that a family has exactly one boy. What is the probability that the family has two children?

Hint: Introduce the event A_n : the family has n children.

Exercise 2:

Let (X,Y) be a Gaussian vector of variance $\begin{pmatrix} 1 & 1/4 \\ 1/4 & 1 \end{pmatrix}$

- 1. Explain why (X + Y, X Y) is a Gaussian vector?
- 2. Are X + Y and X Y independent random variables?
- 3. Determine α such that $X \alpha Y$ be independent of Y.
- 4. Deduce $\mathbb{E}((X \frac{1}{4}Y)^2Y^2)$.

Exercise 3:

Let (X,Y) be a Gaussian vector of variance $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- 1. Explain why X and Y are independent random variables.
- 2. What is the distribution function of the random variable X^2 ?
- 3. What is the distribution function of the random variable $X^2 + Y^2$?