

Université Toulouse 1 Capitole Ecole d'économie de Toulouse

Année universitaire 2016-2017

Session 1

Semestre 1

Master 1 Econometrics, Statistics & Economics

Epreuve: Markov Chains & Applications

Date de l'épreuve : 13 décembre 2016

Durée de l'épreuve : 1h30

Liste des documents autorisés : Néant

Liste des matériels autorisés : Calculatrice

Nombre de pages (y compris page de garde): 3

INTRODUCTION TO STOCHASTIC PROCESSES EXAMINATION- FIRST SESSION

2 pages

YEAR: 2016 - M1 TSE Course: O. Faugeras

Closed book. Exercises are independent.

It is advised to provide careful reasoning and justifications in your answers. It will be taken a great care of them in the notation.

Exercise 1 Markov chains

Let the homogeneous Markov chain $(X_n)_{n\in\mathbb{N}}$ be described by the following graph:

- 1. Compute $P(X_1 = 0|X_0 = 0)$. Fill in the missing arrow on the graph.
- 2. What is the transition matrix?
- 3. What are the communicating classes? Which ones are closed?
- 4. Starting from 0, what is the probability of hitting 6?
- 5. Starting from 1, what is the probability of hitting 3?
- 6. Starting from 1, how long does it take on average to hit 3?
- 7. Assume the chain starts from state 1. One now only focus on the states $\{1,2,3\}$ and one considers that the chain is only defined on these three states. What happens to the marginal distributions when $n \to \infty$? What is the invariant distribution? What is the long-run proportion of time spent in 2?

Exercise 2 Let the homogeneous Markov chain $(X_n)_{n\in\mathbb{N}}$ be described by the following graph:

The chain starts with the following initial distribution $\alpha_0 = \begin{pmatrix} 0.2 & 0.4 & 0.4 \end{pmatrix}$. Compute

1. $P(X_3 = 1 | X_1 = 1)$,

2. $P(X_2 = 2)$,

 $\gamma_{i-1} = \ell^{-1}$

3. $P(X_0 = 1, X_2 = 1),$

4. $P(X_{100} = 1|X_{99} = 3, X_{54} = 2),$

- 5. What is the invariant distribution? What happens to the chain if the initial distribution is equal to the invariant distribution?
- 6. What is the average long run proportion of time spent in state 2?

Exercise 3 Let the Markov chain be described by the following diagram.

with $0 \le \alpha, \beta < 1$. (1 is excluded for both probabilities)

1. What is the transition matrix?

2. Starting from state 1, compute the probability to be in state 1 after n steps. Distinguish the cases between $\alpha + \beta = 0$ and $\alpha + \beta > 0$.

3. Find the limiting distribution as $n \to \infty$.