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Closed book. Exercises are independent.
It is advised to provide careful reasoning and justifications in your answers. It will be taken a great
care of them in the notation.

Exercise 1 Markov chains
Let the homogeneous Markov chain (X,,)nex be described by the following graph :

Compute P(X; = 0|Xg = 0). Fill in the missing arrow on the graph.

What is the transition matrix?

B2 B

What are the communicating classes 7 Which ones are closed 7
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Starting from 0, what is the probability of hitting 67
Starting fromn 1, what is the probability of hitting 37

. Starting from 1, how long does it take on average to hit 37
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Assume the chain starts from state 1. One now only focus on the states {1,2,3} and one
considers that the chain is only defined on these three states. What happens to the marginal
distributions when n — co? What is the invariant distribution? What is the long-run
proportion of time spent in 27

Exercise 2 Let the homogeneous Markov chain (X, ),en be described by the following graph :

The chain starts with the following initial distribution og = (0.2 0.4 0.4). Compute



1. P(X;=1]X, =1),
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P(X100 = 1| X990 = 3, X54 = 2),

What is the invariant distribution ? What happens to the chain if the initial distribution is
equal to the invariant distribution ?
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6. What is the average long run proportion of time spent in state 27

Exercise 3 Let the Markov chain be described by the following diagram.
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with 0 < o, 8 < 1. (1 is excluded for both probabilities)

1. What is the transition matrix ?

2. Starting from state 1, compute the probability to be in state 1 after n steps. Distinguish the
cases between o« + 8 =0 and o + 8 > 0.

3. Find the limiting distribution as n — oco.





