

Université Toulouse 1 Capitole Ecole d'économie de Toulouse

Année universitaire 2015-2016

Session 1

Semestre 4

Licence 2 mention Economie parcours économie-mathématiques et informatique appliquées

EPREUVE: INTEGRALES ET SERIES

Date de l'épreuve : 10 mai 2016

Durée de l'épreuve : 1h30

liste des documents autorisés : aucun

liste des matériels autorisés : aucun

 $nombre\ de\ pages: 3$

Exercice 1.

Démontrer le théorème suivant :

Théorème 1.

Soient I un intervalle ouvert de \mathbb{R} , x_0 un point de I, $(f_n)_{n\in\mathbb{N}}$ une suite d'applications de I sur \mathbb{R} et f une application de I sur \mathbb{R} . Si pour tout $n\in\mathbb{N}$, f_n est continue en x_0 et si $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur I, alors f est continue en x_0 .

Exercice 2.

Soit $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions définies par :

$$\forall x \in [0, 1], \quad f_n(x) = \frac{n^2 x^3}{1 + n^2 x^7}.$$

La suite $(f_n)_{n\in\mathbb{N}}$ converge-t-elle simplement sur [0,1]? uniformément sur [0,1]?

Exercice 3.

Soit $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions définies par :

$$\forall x \in [1, +\infty], \quad f_n(x) = \ln(x + \frac{1}{n}).$$

La suite $(f_n)_{n\in\mathbb{N}}$ converge-t-elle simplement sur $[1, +\infty]$? uniformément sur $[1, +\infty]$?

Exercice 4.

Etudier en fonction de $(a, b) \in \mathbb{R}^2$, la convergence de l'intégrale suivante :

$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{(x-1)^a (x+1)^b}.$$

Exercice 5.

Le but de cet exercice est de déterminer la nature de la série $\sum \frac{\sin(\pi\sqrt{n})}{n^{\alpha}}$ en fonction du réel α .

1. On suppose $\alpha > 1$, montrer que la série $\sum \frac{\sin(\pi \sqrt{n})}{n^{\alpha}}$ converge.

2. Supposons maintenant $\alpha \in]\frac{1}{2},1].$ On définit la fonction φ par

$$\forall t \in [1, +\infty[, \quad \varphi(t) = \frac{\sin(\pi\sqrt{t})}{t^{\alpha}}.$$

Pour tout entier $n \ge 1$, on pose

$$u_n = \varphi(n) = \frac{\sin(\pi\sqrt{n})}{n^{\alpha}}$$
 et $v_n = \int_n^{n+1} \varphi(t) dt$.

(a) A l'aide d'un changement de variable démontrer que pour tout x>1, on a

$$\int_{1}^{x} \varphi(t) dt = 2 \int_{1}^{\sqrt{x}} \frac{\sin(\pi y)}{y^{2\alpha - 1}} dy.$$

(b) En déduire que

$$\int_{1}^{x} \varphi(t) dt = 2 \left(-\frac{\cos(\pi y)}{\pi x^{\alpha - \frac{1}{2}}} - \frac{1}{\pi} \right) - \frac{2(2\alpha - 1)}{\pi} \int_{1}^{\sqrt{x}} \frac{\cos(\pi y)}{y^{2\alpha}} dy.$$

- (c) Démontrer que $\int_1^{\sqrt{x}} \frac{\cos(\pi\sqrt{y})}{y^{2\alpha}} dy$ admet une limite lorsque x tend vers $+\infty$.
- (d) Démontrer qu'il existe K>0 telle que : $\forall t\geq 1, \, |\varphi'(t)|\leq \frac{K}{t^{\alpha+\frac{1}{2}}}.$
- (e) En déduire que : $\forall a,b \in [1,+\infty[,\,a\leq b,\,|\varphi(a)-\varphi(b)|\leq \frac{K}{t^{\alpha+\frac{1}{2}}}|a-b|.$
- (f) Exprimer la somme partielle $V_N = \sum_{n=1}^N v_n$ à l'aide de l'intégrale de φ . En déduire la nature de $\sum v_n$.
- (g) Vérifier que, pour tout entier $n \ge 1$, on a $u_n v_n = \int_n^{n+1} (\varphi(n) \varphi(t)) dt$.
- (h) Montrer que, pour tout entier $n \ge 1$ on a $|u_n v_n| \le \frac{K}{n^{\alpha + \frac{1}{2}}}$. En déduire la nature de la série $\sum (u_n v_n)$.
- (i) Déterminer la nature de la série $\sum \frac{\sin(\pi\sqrt{n})}{n^{\alpha}}$.