Licence 1 mention Economie parcours économie-gestion Licence 1 mention Economie parcours économie-droit

Epreuve: MICROECONOMIE 2 - M.-B. BOUISSOU - Code: L1-S2-1

LES QUESTIONS 1 à 9 SONT INDÉPENDANTES et voici le barème envisagé : $|\mathbf{1}.=1|\mathbf{2}.=1|\mathbf{3}.\mathbf{a}=1|\mathbf{3}.\mathbf{b}=1,5|\mathbf{4}.=1,5|\mathbf{5}.=3|\mathbf{6}.=2|\mathbf{7}.=2|\mathbf{8}.\mathbf{a}=2|\mathbf{8}.\mathbf{b}=1|\mathbf{9}.\mathbf{a}=0,5|\mathbf{9}.\mathbf{b}=1,5|\mathbf{9}.\mathbf{c}=2|$

- 1. (x_1, x_2, y_1, y_2) décrivant les quantités des deux inputs et des deux outputs dans un processus de production, écrire le sous-ensemble des processus efficients, de l'ensemble de production suivant : $\{(5, 4, 8, 8), (4, 4, 8, 7), (5, 5, 9, 8), (4, 4, 7, 8), (5, 4, 9, 8)\}$.
- **2.** Calculer a tel que $(x_1, x_2) = (27, 18)$ soit efficient pour produire $y = Min\left(\frac{x_1}{a}, \frac{x_2}{2}\right)$.
- 3.a Exprimer la relation existant entre le prix r_j et la quantité x_j^* d'un input j dans le plan de production d'une entreprise "preneuse" des prix de ses inputs et du prix p de son output.
- **3.b** Calculer p quand sa fonction de production est $y = \sqrt{\sqrt{x_1 x_2}}$, $r_1 = r_2 = 0.5$ sont les prix de ses deux inputs et $(x_1^*, x_2^*) = (64, 64)$ est la combinaison de ses deux inputs dans son plan de production.
- 4. Dans le repère $(\overrightarrow{Ox_1}, \overrightarrow{Ox_2})$ de deux inputs dont les prix sont r_1 et r_2 , tracer l'isoquante le long de laquelle le $TMST_{2 \ \grave{a} \ 1}(x_1, x_2)$ croît de $TMST_{2 \ \grave{a} \ 1}(0,3)=1/4$ à $TMST_{2 \ \grave{a} \ 1}(4,0)=4$ pour justifier ensuite à quelle condition $(x_1, x_2)=(4,0)$ y sera l'unique combinaison la moins coûteuse pour produire.
- 5. Construire CT(y) quand $y = x_1^{0,1}x_2^{0,2}x_3^{0,2}$ et les prix unitaires des inputs sont : $r_1=1$ et $r_2=r_3=2$.
- **6.** CT(y)=2y+2 est la fonction de coût total de long terme et $\overline{CTM}(y)=\frac{y}{2}+1+\frac{5}{2y}$, la fonction de coût total moyen de court terme d'une entreprise. Poser puis résoudre l'équation permettant de calculer la quantité y d'output qui est adaptée à son utilisation des facteurs fixes à court terme.
- 7. Calculer la quantité y et le prix p au seuil de fermeture d'une entreprise en CPP dont la fonction de coût total de court terme est $\overline{CT}(y) = \frac{y^3}{3} y^2 + 2y + 3$.
- 8. Sur un marché de concurrence pure et parfaite, la demande globale des consommateurs au prix unitaire p, est décrite par $D(p)=\frac{108}{\sqrt{6p}}$ et satisfaite par des entreprises qui ont chacune la même fonction de coût de production de long terme : $CT(y)=2y^3+4$, $\forall y>0$ et CT(0)=0.
- 8.a Déterminer la fonction d'offre y(p) à long terme commune à chacune de ces entreprises;
- 8.
b Calculer la quantité échangée $y_{_{LT}}$ et le nombre N de ces entreprises, à l'équilibre de long terme.
- 9. D(p) = 140 2p et O(p) = 2p 60 décrivent demande et offre globales au prix p, sur un marché. 9.a Calculer le prix p_c d'équilibre de CPP sur ce marché.
- 9.
b Calculer la taxe t par unité consommée qui conduir
ait à un prix hors taxe d'équilibre sur le marché : $p_{\scriptscriptstyle T}=45$.
- **9.c** Exprimer puis calculer les poids t_o et t_D de cette taxe t qui pèseraient respectivement sur l'offre et sur la demande.