

Année universitaire 2015-2016

Session 1 - Semestre 1

Licence 1 mention Economie parcours économie-gestion Licence 1 mention Economie parcours économie-droit

EPREUVE: MATHEMATIQUES 1

Date de l'épreuve : 08/01/2016

Durée de l'épreuve : 1h30

Liste des documents autorisés : aucun

Liste des matériels autorisés : calculatrice type casio fx-92

Nombre de pages (y compris page de garde): 6

CONSIGNES:

- 1. Dégrafer délicatement la dernière feuille du sujet, qui contient la grille de réponses pour le QCM, et coller une étiquette sur cette feuille qui sera à rendre avec la copie. La composition de l'Exercice de rédaction sera faite sur la copie.
- 2. Barême (susceptible d'être modifié) : QCM sur 12pts ; Exercice de rédaction sur 8pts. Pour le QCM : les questions peuvent avoir plusieurs bonnes réponses. Il ne sera pas mis de point négatif pour une réponse incorrecte cochée.

QCM: Les réponses à ce QCM sont à noter sur la grille-réponse en fin de sujet.

• On considère la fonction $f: x \mapsto \frac{x^3 - 3x^2 - 6x + 8}{x^2 + 2x}$ (questions 1 à 7).

1 - Déterminer le(s) antécédent(s) éventuel(s) de 0 par la fonction f:

Réponses possibles :

a. 1

d. 4

b. -1

- **e.** 0
- \mathbf{c} . 0 n'a pas d'antécédent par f
- **f.** -2

2 - Déterminer le(s) image(s) éventuelle(s) de 0 par la fonction f:

Réponses possibles :

a. 8

 \mathbf{d} . 0 ne possède pas d'image par f

b. 2

e. 4

c. 0

f. 1

3 - Déterminer le domaine de définition de f:

Réponses possibles :

- a. $]-\infty;-2[\cup]0;+\infty[$ c. \mathbb{R}

e. $\mathbb{R} \setminus \{-2; 0\}$

- b. $\mathbb{R} \setminus \{-2; 1; 4\}$ d. \mathbb{R}^*

4 - On donne le résultat suivant : f'(1) = -3. L'équation de la tangente à la courbe C_f au point d'abscisse 1 est donnée par :

Réponses possibles :

- a. y = -3x + 1

- **b.** y = -3x
- c. y = x 3d. y = -3x 1e. y = -3x 1f. y = -3x + 3

5 - Parmi les assertions suivantes, cochez celles qui sont vraies:

Réponses possibles :

- a. f est prolongeable par continuité en 3
- d. f n'est pas prolongeable par continuité
- b. f est prolongeable par continuité en -2 e. f est prolongeable par continuité en 1
- c. f est prolongeable par continuité en 4
- f. f est prolongeable par continuité en 0

6 -Parmi les assertions suivantes, cochez celles qui sont vraies :

Réponses possibles:

- a. f en dérivable en 0
- b. f est continue en -2
- c. f est continue en 4

- **d.** f en dérivable en -2
- e. f est continue en 1
- f. f est continue en 0

7 - La dérivée de f est donnée par la formule :

Réponses possibles :

a.
$$\forall x \in D_f, f'(x) = \frac{(3x^2 - 6x - 6)(x^2 + 2x) + (x^3 - 3x^2 - 6x + 8)(2 + 2x)}{x^2 + 2x}$$

b.
$$\forall x \in D_f, f'(x) = \frac{3x^2 - 6x - 6}{(x^2 + 2x)^2}$$

c.
$$\forall x \in D_f, f'(x) = 1 - \frac{4}{x^2}$$

d.
$$\forall x \in \mathbb{R}, f'(x) = \frac{(x-2)(x+2)^2}{(x^2+2x)^2}$$

e.
$$\forall x \in D_f, f'(x) = \frac{(3x^2 - 6x - 6)(x^2 + 2x) + (x^3 - 3x^2 - 6x + 8)(2 + 2x)}{(x^2 + 2x)^2}$$

f.
$$\forall x \in D_f, f'(x) = \frac{4}{(x^2 + 2x)^2}$$

- Soit une fonction $f: E \to F$ (questions 8 à 10).
 - 8 Donner la définition de "f est bijective" avec des quantificateurs (le symbole $\exists !$ signifiant « il existe un unique ») :

Réponses possibles :

a.
$$\forall y \in E, \exists ! x \in F, y = f(x)$$

$$\mathbf{d.} \quad \exists ! y \in E, \forall x \in F, y = f(x)$$

b.
$$\forall x \in E, \exists! y \in F, y = f(x)$$

e.
$$\exists ! x \in E, \forall y \in F, y = f(x)$$

c.
$$\exists ! y \in F, \forall x \in E, y = f(x)$$

f.
$$\forall y \in F, \exists ! x \in E, y = f(x)$$

9 - On rappelle que la fonction f est dite injective si elle vérifie :

$$\forall (x_1, x_2) \in E^2, (f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$$

Quelle est la définition de « f n'est pas injective »?

Réponses possibles :

a.
$$\exists (x_1, x_2) \notin E^2, f(x_1) \neq f(x_2) \text{ et } x_1 \neq x_2$$

b.
$$\exists (x_1, x_2) \in E^2, f(x_1) \neq f(x_2) \text{ et } x_1 \neq x_2$$

c.
$$\forall (x_1, x_2) \in E^2, f(x_1) = f(x_2) \Rightarrow x_1 \neq x_2$$

d.
$$\exists (x_1, x_2) \in E^2, f(x_1) = f(x_2) \text{ et } x_1 \neq x_2$$

e.
$$\forall (x_1, x_2) \notin E^2, f(x_1) \neq f(x_2) \text{ et } x_1 \neq x_2$$

f.
$$\exists (x_1, x_2) \in E^2, f(x_1) \neq f(x_2) \Rightarrow x_1 \neq x_2$$

10 - On rappelle que la fonction f est dite surjective si elle vérifie :

$$\forall y \in F, \exists x \in E, y = f(x)$$

Quelle est la définition de « f n'est pas surjective » ?

Réponses possibles :

a.
$$\forall x \in E, \exists y \in F, y \neq f(x)$$
.

b.
$$\exists y \in F, \forall x \in E, y = f(x).$$

c.
$$\forall y \in F, \exists x \in E, y \neq f(x)$$
.

$$\mathbf{d.} \quad \forall x \in E, \exists y \in F, y = f(x).$$

e.
$$\exists y \in F, \forall x \in E, y \neq f(x).$$

e.
$$\exists y \in F, \forall x \in E, y \neq f(x)$$
.
f. $\forall y \notin F, \exists x \notin E, y \neq f(x)$.

• Soit $g: E \to F$ défini par $\forall x \in E, g(x) = e^{2x-1}$ (questions 11 et 12).

11 - Pour quels ensembles E et F cette fonction est-elle bijective?

Réponses possibles :

a.
$$E = [0; +\infty[$$
 et $F = [1/2; +\infty[$

b.
$$E =]0; +\infty[$$
 et $F = \mathbb{R}$

c.
$$E = \mathbb{R}$$
 et $F = \mathbb{R}$

a.
$$E = [0; +\infty[$$
 et $F = [1/2; +\infty[$ **d.** $E = [1/2; +\infty[$ et $F = [0; +\infty[$

e.
$$E =]0; +\infty[$$
 et $F =]0; +\infty[$

f.
$$E = \mathbb{R}$$
 et $F =]0; +\infty[$

12 - Dans le cas où elle est bijective, quelle est l'expression de la fonction réciproque $g^{-1}: F \to E$?

Réponses possibles :

a.
$$x \mapsto \frac{1 + \ln(x)}{2}$$
.
b. $x \mapsto \ln\left(\frac{x}{2}\right)$.

b.
$$x \mapsto \ln\left(\frac{x}{2}\right)$$
.

c.
$$x \mapsto \ln\left(\frac{1}{2x-1}\right)$$
.

$$\mathbf{d.} \quad x \mapsto \frac{\ln(x) - 1}{2}.$$

e.
$$x \mapsto \ln(2x-1)$$
.

f.
$$x \mapsto \ln\left(\frac{1}{2x+1}\right)$$
.

Questions en vrac...

13 - Quelle est la valeur de
$$\lim_{x\to 4} \frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}}$$
?

Réponses possibles :

$$\mathbf{a} \cdot -\infty$$

b.
$$\frac{2\sqrt{2}}{3}$$

f.
$$\sqrt{2}$$

14 - Quelle est la valeur de $\lim_{x\to -1} \frac{2x^2 + 10x + 8}{3x + 3}$?

Réponses possibles :

a.
$$-\infty$$

c.
$$\frac{2}{3}$$

e.
$$-\frac{2}{3}$$

15 - L'équation
$$10^{2x} - 4 \times 10^x + 3 = 0$$
 admet :

Réponses possibles :

- a. une infinité de solutions réelles
- b. exactement deux solutions réelles
- c. aucune solution réelle
- d. Aucune des autres réponses n'est correcte
- e. exactement trois solutions réelles
- f. exactement une solution réelle

16 - Soit
$$f$$
 définie par $f(x) = \sqrt{\frac{|x+1|}{x-1}}$. Alors f

Réponses possibles :

- a. est continue sur \mathbb{R} et dérivable sur $\mathbb{R} \setminus \{1\}$
- **b.** est continue et dérivable sur $\mathbb{R} \setminus \{-1, 1\}$
- c. est continue et dérivable sur $\mathbb{R} \setminus \{1\}$
- d. est continue sur $\mathbb{R} \setminus \{1\}$ et dérivable sur \mathbb{R}
- e. Aucune des autres réponses n'est correcte
- **f.** est continue et dérivable sur $\mathbb{R} \setminus \{-1\}$

Exercice de rédaction :

Les réponses à cet exercice devront être soigneusement rédigées sur la copie.

Soit
$$f: x \mapsto x^4 - \frac{5}{2}x^3 + \frac{5}{2}x - 1$$
.

- 1. Déterminer le domaine de définition, noté D_f , de f et justifier que f est de classe C^2 sur ce domaine.
- 2. Déterminer les expressions des dérivées première et seconde de f sur D_f .
- 3. Montrer que f possède trois points critiques dans D_f , notés α, β, γ , vérifiant

$$-1 < \alpha < 0 < \beta < 1 < \gamma < 2$$

- 4. Dresser le tableau de signes de la fonction f''.
- 5. En déduire la nature des points-critiques α, β, γ .
- 6. La fonction f admet-elle un maximum global sur D_f ? un minimum global sur D_f ?

	a	b	c	d	е	f
Question						
n. 1						
Question						
n. 2						
Question						
n. 3						
Question						
n. 4						
Question						
n. 5						
Question						
n. 6						
Question						
n. 7						
Question						
n. 8						
Question						
n. 9						
Question						
n. 10						
Question						
n. 11						
Question						
n. 12						
Question						
n. 13						
Question						
n. 14						V
Question						
n. 15						
Question						
n. 16						2

Collez	ici	votre	étiquette