

Année universitaire 2014-2015

Session 1 - Semestre 2

Licence 1 mention Economie et Gestion Licence 1 mention Economie et Droit

EPREUVE: MATHÉMATIQUES 2

Date de l'épreuve : 12 MAI 2015

Durée de l'épreuve : 1h30

Liste des documents autorisés : aucun

Liste des matériels autorisés : Calculatrice non graphique, non programmable

Nombre de pages : 3 (entête compris)

Coller une étiquette ici

Précision. Les réponses au QCM (Partie 1) seront effectuées directement sur l'énoncé du sujet, qui sera placé dans la copie avant que celle-ci soit rendue. Les réponses au Problème (Partie 2) se feront sur la copie.

Questionnaire à choix multiple 1

Les questions suivantes n'ont qu'une seule bonne réponse.

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ une application linéaire dont la matrice associée dans la base canonique est $A = \begin{pmatrix} 1 & -1 & -1 \\ 2 & 0 & 2 \\ 0 & 1 & 2 \end{pmatrix}$.

1)	To	Tro 1	01111	do	det	(1)	oat	
11	Lice	Val	eur	ae	ueu	711	est	

$$\Box$$
 0

$$\Box$$
 -1

$$\Box$$
 1

2) L'application
$$f$$
 est

$$\square$$
 ni injective, ni surjective

3) Le rang de
$$f$$
 est :

$$\Box$$
 0

$$\Box$$
 1

$$\square$$
 2

$$\square$$
 3

4) Une base de Ker f est :

$$\Box \left\{ \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} \right\}$$

$$\square \left\{ \begin{pmatrix} -1\\-2\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\0 \end{pmatrix} \right\}$$

$$\square \left\{ \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} \qquad \square \left\{ \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \right\} \qquad \square \left\{ \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \right\}$$

$$\Box \left\{ \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \right\}$$

5) L'ensemble Im(f) est égal à :

$$\square \{(x,y,z) \in \mathbb{R}^3; x - \frac{y}{2} + z = 0 \text{ et } x - y + 2z = 0\}$$

$$\square \{(x,y,z) \in \mathbb{R}^3; x - \frac{y}{2} + z = 0\}$$

$$\square \{(0,0,0)\}$$

$$\square \mathbb{R}^3.$$

$$\Box \{(x, y, z) \in \mathbb{R}^3; x - \frac{y}{2} + z = 0\}$$

$$\Box \{(0,0,0)\}$$

$$\sqcap \mathbb{R}^3$$
.

6) Parmi les vecteurs suivants, lequel n'appartient pas à Im(f)?

$$\square \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$\square \begin{pmatrix} 2\\4\\0 \end{pmatrix}$$

$$\square \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}$$

$$\square \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

7) Soient a, b et c des paramètres réels, tels que 2a - b + 2c = 0. On considère le système suivant, d'inconnues x, y, et z:

$$(S) \begin{cases} x - y - z = a \\ 2x + 2z = b \\ y + 2z = c \end{cases}$$

Alors S admet :

☐ Aucune solution

☐ Deux solutions

☐ Une seule solution

☐ Une infinité de solutions

8) Soient $e_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ et $e_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Pour que la famille $\mathcal{E} = (e_1, e_2, e_3)$ soit une base de \mathbb{R}^3 , on peut choisir

$$\square \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$\Box$$
 $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

$$\Box$$
 $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

$$\Box$$
 $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$

- 9) On note $\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}_{\mathcal{E}}$ les coordonnées dans la base \mathcal{E} du vecteur $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ de \mathbb{R}^3 . On rappelle que cela équivaut à $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$. Pour que ces coordonnées vérifient l'équation $\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = P \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, la matrice
 - $\Box \ \ \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}. \qquad \qquad \Box \ \ \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \qquad \Box \ \ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad \Box \ \ \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$
- 10) Les coordonnées du vecteur $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ dans la base $\mathcal E$ sont :
 - $\square \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}_{\varepsilon} \qquad \square \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}_{\varepsilon} \qquad \square \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}_{\varepsilon} \qquad \square \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}_{\varepsilon}$
- 11) La matrice de f relativement à la base $\mathcal E$ est :
 - $\square \ PAP \qquad \square \ P^{-1}AP \qquad \square \ PAP^{-1} \qquad \square \ P^{-1}A.$

2 Problème

JUSTIFIER SOIGNEUSEMENT TOUTES VOS RÉPONSES

On considère l'application $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $(x,y) \mapsto \left(\frac{x-y}{2}, \frac{y-x}{2}\right)$ et les vecteurs de \mathbb{R}^2 suivants : $X_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $X_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Enfin, on pose $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

- 1) Justifier que f est une application linéaire.
- 2) Déterminer la matrice associée à l'application f (relativement à la base canonique de \mathbb{R}^2). On notera A cette matrice.
- 3) Montrer que $\ker(f) = Vect(X_0)$ et $Im(f) = Vect(X_1)$.
- 4) Calculer le déterminant $\begin{vmatrix} \frac{1}{2} \lambda & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \lambda \end{vmatrix}$.
- 5) Déterminer deux valeurs distinctes λ_0 et λ_1 , ordonnées telles que $\lambda_0 < \lambda_1$, qui vérifient la propriété : $A \lambda_0 I_2$ et $A \lambda_1 I_2$ sont non inversibles.
- 6) Existe-t-il une autre valeur λ telle que $A \lambda I_2$ soit non inversible?
- 7) Montrer qu'on a $AX_0 = \lambda_0 X_0$ et $AX_1 = \lambda_1 X_1$.
- 8) La matrice P est-elle inversible? Si oui, calculer son inverse P^{-1} .
- 9) Justifier que la famille $\{X_0, X_1\}$ forme une base de \mathbb{R}^2 .
- 10) Soit $X = \begin{pmatrix} x \\ y \end{pmatrix}$ un vecteur de \mathbb{R}^2 . Déterminer les coordonnées α_0 et α_1 de X dans la base $\{X_0, X_1\}$.
- 11) Calculer le produit $P^{-1}AP$.
- 12) En déduire la valeur de A^{1789} .