



Année Universitaire 2012-2013 SESSION 1

## **MASTER 1**

## PROBABILITY THEORY

(durée 1h30)

## Mardi 15 janvier 2013 ~ 10h00 -11h30

J. P. DECAMPS

## 

- 1. Let  $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$  be a probability space where  $\Omega = \{1, 2, 3, 4, 5, 6\}$ , and where  $\mathbb{P}(\{1\}) = \mathbb{P}(\{2\}) = \frac{1}{16}$ ,  $\mathbb{P}(\{3\}) = \mathbb{P}(\{4\}) = \frac{1}{4}$  and  $\mathbb{P}(\{5\}) = \mathbb{P}(\{6\}) = \frac{3}{16}$ . Let X and Y two random variables defined on  $\Omega$  by the relations  $X = 2\mathbb{I}_{\{1,2\}} + 8\mathbb{I}_{\{3,4,5,6\}}$  and  $Y = 4\mathbb{I}_{\{1,2,3\}} + 6\mathbb{I}_{\{4,5,6\}}$ . Compute  $\mathbb{E}[X|Y=4]$ ,  $\mathbb{E}[X|Y]$ .
- 2. Let us consider a financial model with two dates 0 and 1. At each date an entrepreneur decides whether to take his private firm public (this decision is called an IPO decision). The IPO decision is made based on a cutoff rule: an IPO takes place if the firm's expected profitability exceeds a given cutoff. Let  $c \in R$  denotes the cutoff, which is known, and  $\overline{\Theta}$  the firm's average profitability, which is unknown.

At time 0, the entrepreneur's beliefs about the firm's average profitability is that  $\overline{\Theta}$  has a normal distribution  $\mathcal{N}(\hat{\theta}_0, \hat{\sigma}_0)$ .

At time 1, the entrepreneur observes a signal about average profitability  $\overline{\Theta}$ , namely the realized profitability  $\theta$ . The realized profitability  $\theta$  corresponds to the value taken by the random variable  $\Theta = \overline{\Theta} + U$  where U is independent from  $\Theta$  and has a Normal distribution  $\mathcal{N}(0, \sigma_U)$ .

- (a) Write as a function of  $\hat{\theta}_0$ ,  $\hat{\sigma}_0$ ,  $\sigma_U$  and  $\theta$  the expected profitability at time  $1 \hat{\theta} = E[\overline{\Theta} \mid \overline{\Theta} + U = \theta]$  (you can use directly a result proven in the course).
- (b) Show that, for an IPO to take place at time 1, realized profitability  $\theta$  must exceed expected profitability  $\hat{\theta}$  (Note that, if an IPO takes place at date 1, it did not take place at time 0).
- 3. (a) Let X be a non-negative random variable defined on a probability space  $(\Omega, \mathcal{A}, \mathbb{P})$ . Show that, for any  $\alpha > 0$ ,

$$I\!\!P(X \geq \alpha) \leq \frac{I\!\!E[X]}{\alpha}.$$

- (b) Let X be a non-negative random variable defined on a probability space  $(\Omega, \mathcal{A}, \mathbb{P})$  with  $\mathbb{E}[X] < \infty$ . Show that  $\mathbb{P}(X = \infty) = 0$  (Hint: write  $(X = \infty) = \bigcap_{n \geq 1} (X \geq n)$ )
- (c) Let X be a random variable defined on  $(\Omega, \mathcal{A}, \mathbb{P})$  with finite mean  $\mu$ . Show that

$$IP(|X - \mu| \ge \alpha) \le \frac{\operatorname{Var}(X)}{\alpha^2}.$$

- (d) Let X and Y two random variables in  $L^1(\Omega, \mathcal{A}, \mathbb{P})$ 
  - i. Give a characterization of  $I\!\!E[X|Y]$ .
  - ii. Let us consider two  $\sigma$ -fields  $\mathcal{F}$  and  $\mathcal{G}$  with  $\mathcal{F} \subset \mathcal{G} \subset \mathcal{A}$ . Show that  $\mathbb{E}[\mathbb{E}[Y|\mathcal{G}]|\mathcal{F}] = \mathbb{E}[Y|\mathcal{F}]$ .