O. PERRIN

SEMESTRE 5 LICENCE 3 mention ECONOMIE

LICENCE 3 mention ECONOMIE parcours Magistère

Probabilités statistique / code : L3S54

Lundi 24 Juin 2013 ~ amphi MB1

-=-

→ durée conseillée pour traiter ce sujet : 1 heure

→ ATTENTION : le nom de la matière et son code doivent être IMPERATIVEMENT recopiés sur la copie d'examen

Seule la calculatrice Casio Fx92 est autorisée.

RÉPONDRE PAR VRAI ou PAR FAUX (et uniquement par VRAI ou par FAUX), aux dix affirmations suivantes (une réponse juste vaut 1 point, une mauvaise réponse -0,5 point, et pas de réponse 0 point). Les deux exercices sont indépendants.

- Exercice I. On a observé qu'un service administratif a reçu 720 clients en 60 heures. Soit X la variable aléatoire (v.a.) représentant le nombre de clients par quart-d'heure.
 - 1. La loi de X est une loi binomiale $\mathcal{B}(720; \frac{1}{240})$.
 - 2. On peut approximer la loi de X par une loi de Poisson $\mathcal{P}(3)$.
 - 3. En supposant que le service peut traiter 4 personnes par quart-d'heure, et en utilisant l'approximation précédente, la probabilité P que le nombre de clients excède la capacité du service vaut 0, 18 (on donne $\exp(-3) = 0,04979$).
 - 4. Pour que cette probabilité P soit inférieure à 0,10, le service doit traiter 5 personnes au minimum par quart-d'heure.
 - 5. (question indépendante des précédentes) Si Y est la v.a. représentant le nombre de clients par paire d'heures, sa loi est une loi binomiale $\mathcal{B}(720; \frac{1}{30})$.
- Exercice II. On choisit un point au hasard, selon une loi uniforme, dans le triangle ABC, où A, B et C ont pour coordonnées respectives (-1,0), (1,0) et (0,1) dans un repère orthonormé. On note (X,Y) le couple de v.a. continues représentant les coordonnées du point tiré au hasard.
 - 1. Le support du couple (X, Y) est $D = \{(x, y) \in \mathbb{R}^2 | -1 \le x \le 1 \text{ et } 0 \le y \le 1 |x| \}$.
 - 2. La densité conjointe du couple (X,Y) vaut $f(x,y) = \mathbb{1}_D(x,y)$.
 - 3. La densité marginale de X vaut $f_X(x) = (1 |x|) \mathbb{1}_{[-1;1]}(x)$.
 - 4. La densité de |X| vaut $f_{|X|}(x) = (2-2x)\mathbb{1}_{[0;1]}(x)$.
 - 5. La loi conditionnelle de Y sachant X = x est une loi normale centrée réduite.